当前位置:首页 > 教学课件 > 数学 > 正文内容

人教高中数学A版必修一 《章末整合》函数的概念与性质PPT

第一网小编2年前 (2022-09-18)数学270

《章末整合》函数的概念与性质PPT 详细介绍:

《章末整合》函数的概念与性质PPT《章末整合》函数的概念与性质PPT《章末整合》函数的概念与性质PPT

《章末整合》函数的概念与性质PPT

第一部分内容:专题一 求函数的值域

例1求下列函数的值域:

(1)y=(5x"-" 1)/(4x+2);(2)y=(x^2 "-" 4x+3)/(2x^2 "-" x"-" 1);

(3)y=(2x^2+4x"-" 7)/(x^2+2x+3);(4)y=2x-√(x"-" 1).

解:(1)(借助反比例函数的特征求解)

y=(5x"-" 1)/(4x+2)=(5/4 "(" 4x+2")-" 1"-"  5/2)/(4x+2)=(5/4 "(" 4x+2")-"  7/2)/(4x+2)=5/4-7/(2"(" 4x+2")" ).

∵7/(2"(" 4x+2")" )≠0,∴y≠5/4.

所以函数的值域为{y"∈" R├|y≠5/4┤}.

(2)∵y=(x^2 "-" 4x+3)/(2x^2 "-" x"-" 1)=("(" x"-" 1")(" x"-" 3")" )/("(" x"-" 1")(" 2x+1")" )=(x"-" 3)/(2x+1)(x≠1),

又(x"-" 3)/(2x+1)=(1/2 "(" 2x+1")-"  7/2)/(2x+1)=1/2-7/(2"(" 2x+1")" ).

当x=1时,原式y=(1"-" 3)/(2×1+1)=-2/3.

∴函数的值域为{y"∈" R├|y≠1/2 "且" y≠"-"  3/2┤}.

(3)(转化为关于x的二次方程,然后利用判别式求值域)

已知函数式可变形为:yx2+2yx+3y=2x2+4x-7.

(y-2)x2+2(y-2)x+3y+7=0,

当y≠2时,将上式视为关于x的一元二次方程.

∵x∈R,∴Δ≥0,即[2(y-2)]2-4(y-2)(3y+7)≥0.

解得-9/2≤y<2.

当y=2时,3×2+7≠0,∴y≠2.

∴函数的值域为 -9/2,2 .

(4)令√(x"-" 1)=t,则t≥0,x=t2+1.

∴y=2(t2+1)-t=2t2-t+2=2 t-1/4 2+15/8.

∵t≥0,∴y≥15/8.∴函数y=2x-√(x"-" 1)的值域是 15/8,+∞ .

... ... ...

章末整合PPT,第二部分内容:专题二 利用函数单调性求函数的最值

例2设a为实数,函数f(x)=x2+|x-a|+1,x∈R.

(1)讨论函数f(x)的奇偶性;

(2)求f(x)的最小值.

解:(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),此时f(x)为偶函数.

当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,f(-a)≠f(a),f(-a)≠-f(a).

此时函数f(x)既不是奇函数,也不是偶函数.

(2)①当x≤a时,函数f(x)=x2-x+a+1= x-1/2 2+a+3/4.

若a≤1/2,则函数f(x)在(-∞,a]上单调递减,从而,函数f(x)在(-∞,a]上的最小值为f(a)=a2+1.

若a>1/2,则函数f(x)在(-∞,a]上的最小值为f 1/2 =3/4+a,且f 1/2 <f(a).

②当x≥a时,函数f(x)=x2+x-a+1= x+1/2 2-a+3/4.

若a≤-1/2,则函数f(x)在[a,+∞)上的最小值为f -1/2 =3/4-a,且f -1/2 ≤f(a).

若a>-1/2,则函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.

综上,当a≤-1/2时,函数f(x)的最小值是3/4-a;

当-1/2<a≤1/2时,函数f(x)的最小值是a2+1.

当a>1/2时,函数f(x)的最小值是a+3/4.

方法技巧 解含参数问题的基本思想是分类讨论,关键是确定讨论的标准,要求不重复,不遗漏.本题对于奇偶性的讨论标准是参数为零以及非零,分别对应偶函数及非奇非偶函数;对于最大值与最小值的讨论标准比较复杂,可以看为两类标准,一类是绝对值的零点(零点知识将在第四章学习),二是抛物线的对称轴与相应区间的位置,通常需借助函数的图象.

... ... ...

章末整合PPT,第三部分内容:专题三 函数的奇偶性的应用

例3若奇函数y=f(x)是定义在[-1,1]上的减函数,且f(1-a)+f(1-a2)>0,求a的取值范围.

解:由奇函数的性质,-f(1-a2)=f(a2-1),即f(1-a)+f(1-a2)>0等价于f(1-a)>f(a2-1),

又因为f(x)是定义在[-1,1]上的减函数,

所以{■("-" 1≤1"-" a≤1"," @"-" 1≤a^2 "-" 1≤1"," @1"-" a<a^2 "-" 1"," )┤解得1<a≤√2.

方法技巧 利用f(x)是奇函数和减函数的性质,去掉f,等价变换出a的不等式组.

变式训练3若f(x)是定义在实数集R上的偶函数,且在区间(-∞,0)上是增函数,又f(2a2+a+1)<f(3a2-2a+1),求a的取值范围.

解:法一:∀x1,x2∈(0,+∞),且x1<x2,则-x1>-x2,

因为f(x)在区间(-∞,0)上是增函数,

所以f(-x1)>f(-x2).

又因为f(x)是偶函数,得f(x1)>f(x2),

所以f(x)在(0,+∞)上是减函数,

因为2a2+a+1=2 a2+1/2a +1=2 a+1/4 2+7/8,3a2-2a+1=3 a-1/3 2+2/3,

所以2a2+a+1和3a2-2a+1是两个正数,

所以f(2a2+a+1)<f(3a2-2a+1)等价于2a2+a+1>3a2-2a+1,解得0<a<3.

法二:同法一,判断出2a2+a+1和3a2-2a+1是两个正数,则有-(2a2+a+1)<0和-(3a2-2a+1)<0.

由偶函数性质,f(2a2+a+1)<f(3a2-2a+1)等价于f[-(2a2+a+1)]<f[-(3a2-2a+1)],

又f(x)在区间(-∞,0)上是增函数,即-(2a2+a+1)<-(3a2-2a+1),解得0<a<3.

关键词:高中人教A版数学必修一PPT课件免费下载,章末整合PPT下载,函数的概念与性质PPT下载,.PPT格式;

扫描二维码推送至手机访问。

版权声明:本文由第一范文|第一PPT|免费作文|免费PPT课件下载发布,如需转载请注明出处。

本文链接:http://smzbm.com/shuxue/2022/17107.html

分享给朋友:

“人教高中数学A版必修一 《章末整合》函数的概念与性质PPT” 的相关文章

人教版一年级数学上册 《认识钟表》PPT教学课件

人教版一年级数学上册 《认识钟表》PPT教学课件

《认识钟表》PPT教学课件 详细介绍: 《认识钟表》PPT教学课件 第一部分内容:情景导入 猜一猜 有个好朋友,会跑没有腿,会响没有嘴。它会告诉我,什么时候起,什么时候睡。请你猜猜看,好朋友是谁? 交流:你都在什么地方见过钟表?你知道钟表的那些知识? ... ... ... 认识钟...

人教版一年级数学上册 《比大小》PPT教学课件

人教版一年级数学上册 《比大小》PPT教学课件

《比大小》PPT教学课件 详细介绍: 人教版一年级数学上册《比大小》PPT教学课件,共18页。 教学目标 1.认识符号“>”“<”“=”,知道这些符号的含义,会用符号来描述5以内两个数之间的大小关系。 2.在用具体事物比较到用符号表示数的大小的过程中,体会由具体到抽象的过程,感受一...

人教版一年级数学上册 《加减混合》6-10的认识和加减法PPT下载

人教版一年级数学上册 《加减混合》6-10的认识和加减法PPT下载

《加减混合》6-10的认识和加减法PPT下载 详细介绍: 《加减混合》6-10的认识和加减法PPT下载 第一部分内容:复习导入 这里有四只丑小鸭,每只丑小鸭身上都带着一道题,只要同学们把这些题解决了,丑小鸭们就会变成美丽的天鹅。谁来帮帮它们? 3 + 2 + 1 =    5 +...

人教版一年级数学上册 《比多少》PPT课件

人教版一年级数学上册 《比多少》PPT课件

《比多少》PPT课件 详细介绍: 《比多少》PPT课件,共21页。 学习目标 1、通过这节课的学习,小朋友们们应熟练掌握比较大小的方法和技巧。 2、应该做一个有心的小孩儿,试着和小伙伴们一起说一说身边事物的多与少 新知探究 三只热心的小猪在帮他们的邻居小兔盖最坚固的新房子呢!他们你...

人教版一年级数学上册 《0的认识》1-5的认识和加减法PPT课件下载

人教版一年级数学上册 《0的认识》1-5的认识和加减法PPT课件下载

《0的认识》1-5的认识和加减法PPT课件下载 详细介绍: 人教版一年级数学上册《0的认识》1-5的认识和加减法PPT课件下载,共18页。 故事导入 亲爱的小猴: 妈妈有事晚点回家,我在家里留了几个桃子给你当晚餐,桃子的个数比1大比3小。 探究新知 0表示一个也没有。 0表示起点。...

人教版一年级数学上册 《0的认识和加减法》PPT课件

人教版一年级数学上册 《0的认识和加减法》PPT课件

《0的认识和加减法》PPT课件 详细介绍: 《0的认识和加减法》PPT课件,共18页。 小猴吃桃 1. 盘子里有2个桃子,用数字几表示? 2. 盘子里有1个桃子,用数字几表示? 3. 盘子里一个桃子也没有了,用什么数字表示呢? 0的含义 含义一:0表示什么都没有。 含义二:0表示起...