当前位置:首页 > 教学课件 > 数学 > 正文内容

人教高中数学B版必修一 《均值不等式及其应用》等式与不等式PPT

第一网小编2年前 (2022-09-19)数学152

《均值不等式及其应用》等式与不等式PPT 详细介绍:

《均值不等式及其应用》等式与不等式PPT《均值不等式及其应用》等式与不等式PPT《均值不等式及其应用》等式与不等式PPT《均值不等式及其应用》等式与不等式PPT

《均值不等式及其应用》等式与不等式PPT

第一部分内容:课标阐释

1.了解均值不等式的证明过程,理解均值不等式成立的条件,等号成立的条件及几何意义.

2.会运用均值不等式解决最值、范围、不等式证明等相关问题.

3.掌握运用均值不等式(a+b)/2≥√ab(a,b>0)求最值的常用方法及需注意的问题.

... ... ...

均值不等式及其应用PPT,第二部分内容:自主预习

知识点一、重要不等式

1.填空:

对于任意实数a,b,有a2+b2≥2ab,当且仅当a=b时,等号成立.

2.怎样比较a2+b2,("(" a+b")" ^2)/2,2ab三者的大小关系?

提示:a2+b2≥("(" a+b")" ^2)/2≥2ab,当且仅当a=b时等号成立.利用作差法即可证明.

3.做一做

已知a,b∈R,且a2+b2=4,则ab(  )

A.有最大值2,有最小值-2

B.有最大值2,但无最小值

C.有最小值2,但无最大值

D.有最大值2,有最小值0

解析:这里没有限制a,b的正负,则由a2+b2=4,a2+b2≥2|ab|,得|ab|≤2,所以-2≤ab≤2,可知ab的最大值为2,最小值为-2.

答案:A

知识点二、均值不等式

1.填空

(1)给定两个正实数a,b,数(a+b)/2称为a,b的算术平均值,数√ab称为a,b的几何平均值.

(2)均值不等式:如果a,b都是正数,那么(a+b)/2≥√ab,当且仅当a=b时,等号成立.均值不等式也称为基本不等式,其实质是:两个正实数的算术平均值不小于它们的几何平均值.

(3)公式变形:①a+b≥2√ab,ab≤((a+b)/2)^2(a,b>0),当且仅当a=b时,等号成立.

②a+1/a≥2(a>0),当且仅当a=1时,等号成立.

③a/b+b/a≥2(a,b同号),当且仅当a=b时,等号成立.

2.均值不等式与不等式a2+b2≥2ab的关系如何?请对此进行讨论.

提示:(1)在a2+b2≥2ab中,a,b∈R;在a+b≥2√ab中,a,b>0.

(2)两者都带有等号,等号成立的条件从形式上看是一样的,但实质不同(范围不同).

(3)证明的方法都是作差比较法.

(4)都可以用来求最值.

知识点三、重要结论

1.思考

填空:

已知x,y都为正数,则

(1)若x+y=S(和为定值),则当x=y时,积xy取得最大值____.

(2)若xy=P(积为定值),则当x=y时,和x+y取得最小值_____.

2.应用上述两个结论时,要注意哪些事项?

提示:应用上述性质时注意三点:(1)各项或各因式均为正;(2)和或积为定值;(3)各项或各因式能取得相等的值.即“一正二定三相等”.

... ... ...

均值不等式及其应用PPT,第三部分内容:探究学习

利用均值不等式求范围或最值 

例1 (1)已知x,y∈(0,+∞),且2x+y=1,求1/x+1/y的最小值;

(2)已知0<x<1/2,求函数y=x(1-2x)的最大值.

分析:(1)利用“1”的代换,即将1/x+1/y等价转化为(1/x+1/y)×1或(2x+y)/x+(2x+y)/y即可.

(2)将“x(1-2x)”变形为“1/2×2x(1-2x)”,利用2x+(1-2x)=1为定值即可.

解:(1)1/x+1/y=(1/x+1/y)(2x+y)=2+2x/y+y/x+1=3+2x/y+y/x

≥3+2√(2x/y "•"  y/x)=3+2√2,

当且仅当2x/y=y/x,即{■(y/x=√2 "," @2x+y=1)┤⇒{■(x=1/(2+√2) "," @y=√2/(2+√2))┤时等号成立.

∴1/x+1/y的最小值为3+2√2.

(2)∵0<x<1/2,∴1-2x>0.

∴y=x(1-2x)=1/2•2x(1-2x)≤1/2 [(2x+"(" 1"-" 2x")" )/2]^2=1/8,

当且仅当2x=1-2x,即x=1/4时,等号成立.

反思感悟1.利用均值不等式求范围或最值时要注意:

(1)x,y一定要都是正数.

(2)求积xy最大值时,应看和x+y是否为定值;求和x+y最小值时,应看积xy是否为定值.

(3)等号是否能够成立.

2.有时需结合题目条件进行添项、凑项以及“1”的代换等,目的是为了使和或积为常数.

... ... ...

均值不等式及其应用PPT,第四部分内容:思维辨析

一题多变——利用基本不等式求最值 

典例(1)已知x<5/4,求y=4x-2+1/(4x"-" 5)的最大值;

(2)已知0<x<1/2,求y=1/2x(1-2x)的最大值;

(3)已知x>0,求f(x)=2x/(x^2+1)的最大值;

(4)已知x>0,y>0,且1/x+9/y=1,求x+y的最小值.

分析:变形所求代数式的结构形式,使用符合基本不等式的结构特征.

(1)4x-2+1/(4x"-" 5)=4x-5+1/(4x"-" 5)+3;

(2)1/2x(1-2x)=1/4•2x•(1-2x);

(3)2x/(x^2+1)=2/(x+1/x);

(4)x+y=(x+y)•1=(x+y) 1/x+9/y .

... ... ...

均值不等式及其应用PPT,第五部分内容:当堂检测

1.函数f(x)=2x+8/x(x>0)有(  )

A.最大值8 B.最小值8

C.最大值4 D.最小值4

答案:B

2.已知点P(x,y)在直线x+3y-2=0上,则代数式3x+27y的最小值是_________,此时x=_________,y=_________. 

解析:根据条件可知x+3y=2,而3x+27y=3x+33y≥2√(3^(x+3y) )=2√(3^2 )=6,当且仅当3x=33y时取等号.解{■(x+3y"-" 2=0"," @x=3y"," )┤得x=1,y=1/3.

答案:6 1 1/3

... ... ...

关键词:高中人教B版数学必修一PPT课件免费下载,均值不等式及其应用PPT下载,等式与不等式PPT下载,.PPT格式;

扫描二维码推送至手机访问。

版权声明:本文由第一范文|第一PPT|免费作文|免费PPT课件下载发布,如需转载请注明出处。

本文链接:http://smzbm.com/shuxue/2022/19102.html

分享给朋友:

“人教高中数学B版必修一 《均值不等式及其应用》等式与不等式PPT” 的相关文章

人教版一年级数学上册 《认识钟表》PPT教学课件

人教版一年级数学上册 《认识钟表》PPT教学课件

《认识钟表》PPT教学课件 详细介绍: 《认识钟表》PPT教学课件 第一部分内容:情景导入 猜一猜 有个好朋友,会跑没有腿,会响没有嘴。它会告诉我,什么时候起,什么时候睡。请你猜猜看,好朋友是谁? 交流:你都在什么地方见过钟表?你知道钟表的那些知识? ... ... ... 认识钟...

人教版一年级数学上册 《加减混合》PPT下载

人教版一年级数学上册 《加减混合》PPT下载

《加减混合》PPT下载 详细介绍: 《加减混合》PPT下载,共18页。 复习导入 情景导入 仔细观察,用自己的话说一说图上画了什么。 探究新知 “4”“3”“2”在算式里分别表示什么?这道算式该怎么读? 要求现在有几只天鹅,该怎样列式? 巩固练习 课堂小结 今天学习的算式既有加法又...

人教版一年级数学上册 《加减混合》6-10的认识和加减法PPT下载

人教版一年级数学上册 《加减混合》6-10的认识和加减法PPT下载

《加减混合》6-10的认识和加减法PPT下载 详细介绍: 《加减混合》6-10的认识和加减法PPT下载 第一部分内容:复习导入 这里有四只丑小鸭,每只丑小鸭身上都带着一道题,只要同学们把这些题解决了,丑小鸭们就会变成美丽的天鹅。谁来帮帮它们? 3 + 2 + 1 =    5 +...

人教版一年级数学上册 《0的认识和加减法》PPT课件

人教版一年级数学上册 《0的认识和加减法》PPT课件

《0的认识和加减法》PPT课件 详细介绍: 《0的认识和加减法》PPT课件,共18页。 小猴吃桃 1. 盘子里有2个桃子,用数字几表示? 2. 盘子里有1个桃子,用数字几表示? 3. 盘子里一个桃子也没有了,用什么数字表示呢? 0的含义 含义一:0表示什么都没有。 含义二:0表示起...

人教版一年级数学上册 《上下前后》PPT下载

人教版一年级数学上册 《上下前后》PPT下载

《上下前后》PPT下载 详细介绍: 《上下前后》PPT下载,共16页。 学习目标 1.通过这节课的学习,小朋友们应该对上下左右有了初步的了解。 2.运用自己所学的知识,指出生活中的上下左右关系 课堂导入 新知探究 问题: 1. 观察这幅图,你看到了什么? 2. 你能用“上、下”这样...

人教版一年级数学上册 《11-20各数的写法》11-20各数的认识PPT

人教版一年级数学上册 《11-20各数的写法》11-20各数的认识PPT

《11-20各数的写法》11-20各数的认识PPT 详细介绍: 《11-20各数的写法》11-20各数的认识PPT 第一部分内容:情境导入 (1)从1数到20。 (2)从15数到9。 自主探究 有 1 个十在十位写 1, 有 2 个十在十位写 2。 有几个一在个位写几。 先写十位再...