人教高中数学A版必修一 《函数的应用》函数的概念与性质PPT课件
《函数的应用》函数的概念与性质PPT课件 详细介绍:
《函数的应用》函数的概念与性质PPT课件
第一部分内容:学 习 目 标
1.了解函数模型(如一次函数、二次函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
2.能够利用给定的函数模型或建立确定的函数模型解决实际问题.(重点、难点)
核 心 素 养
1. 通过建立函数模型解决实际问题,培养数学建模素养.
2. 借助实际问题中的最值问题,提升数学运算素养.
... ... ...
函数的应用PPT,第二部分内容:自主预习探新知
新知初探
常见的几类函数模型
函数模型 函数解析式
一次函数模型f(x)=ax+b(a,b为常数,a≠0)
二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)
分段函数模型f(x)=f1x,x∈D1f2x,x∈D2……fnx ,x∈Dn
初试身手
1.一个矩形的周长是40,则矩形的长y关于宽x的函数解析式为( )
A.y=20-x,0<x<10
B.y=20-2x,0<x<20
C.y=40-x,0<x<10
D.y=40-2x,0<x<20
2.一辆汽车在某段路程中的行驶路程s关于时间t变化的图象如图所示,那么图象所对应的函数模型是( )
A.一次函数模型
B.二次函数模型
C.分段函数模型
D.无法确定
3.某商店进货单价为45元,若按50元一个销售,能卖出50个;若销售单价每涨1元,其销售量就减少2个,为了获得最大利润,此商品的最佳售价应为每个________元.
... ... ...
函数的应用PPT,第三部分内容:合作探究提素养
一次函数模型的应用
【例1】 某厂日生产文具盒的总成本y(元)与日产量x(套)之间的关系为y=6x+30 000.而出厂价格为每套12元,要使该厂不亏本,至少日生产文具盒( )
A.2 000套 B.3 000套
C.4 000套 D.5 000套
规律方法
1.一次函数模型的实际应用
一次函数模型应用时,本着“问什么,设什么,列什么”这一原则.
2.一次函数的最值求解
一次函数求最值,常转化为求解不等式ax+b≥0(或≤0),解答时,注意系数a的正负,也可以结合函数图象或其单调性来求最值.
跟踪训练
1.如图所示,这是某通讯公司规定的打某国际长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的函数关系图象.根据图象填空:
①通话2分钟,需要付电话费________元;
②通话5分钟,需要付电话费________元;
③如果t≥3,则电话费y(元)与通话时间t(分钟)之间的函数关系式为________.
①3.6 ②6 ③y=1.2t(t≥3) [①由图象可知,当t≤3时,电话费都是3.6元.
②由图象可知,当t=5时,y=6,需付电话费6元.
③易知当t≥3时,图象过点(3,3.6),(5,6),待定系数求得y=1.2t(t≥3).]
二次函数模型的应用
【例2】 某水果批发商销售每箱进价为40元的苹果,假设每箱售价不得低于50元且不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天的销售量y(箱)与销售单价x(元/箱)之间的函数关系式;
(2)求该批发商平均每天的销售利润w(元)与销售单价x(元/箱)之间的函数关系式;
(3)当每箱苹果的售价为多少元时,可以获得最大利润?最大利润是多少?
[思路点拨] 本题中平均每天的销售量y(箱)与销售单价x(元/箱)是一个一次函数关系,虽然x∈[50,55],x∈N,但仍可把问题看成一次函数模型的应用问题;平均每天的销售利润w(元)与销售单价x(元/箱)是一个二次函数关系,可看成是一个二次函数模型的应用题.
规律方法
二次函数模型的解析式为g(x)=ax2+bx+c(a≠0).在函数建模中,它占有重要的地位.在根据实际问题建立函数解析式后,可利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的最值问题.二次函数求最值最好结合二次函数的图象来解答.
课堂小结
1.解有关函数的应用题,首先应考虑选择哪一种函数作为模型,然后建立其解析式.求解析式时,一般利用待定系数法,要充分挖掘题目的隐含条件,充分利用函数图形的直观性.
2.数学建模的过程图示如下:
... ... ...
函数的应用PPT,第四部分内容:当堂达标固双基
1.思考辨析
甲、乙两人在一次赛跑中,路程s与时间t的函数关系如图所示,判断下列说法的对错
(1)甲比乙先出发.( )
(2)乙比甲跑的路程多.( )
(3)甲、乙两人的速度相同.( )
(4)甲先到达终点.( )
2.向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是( )
3.某人从A地出发,开汽车以80千米/小时的速度经2小时到达B地,在B地停留2小时,则汽车离开A地的距离y(单位:千米)是时间t(单位:小时)的函数,该函数的解析式是________.
4. 某游乐场每天的盈利额y元与售出的门票张数x之间的函数关系如图所示,试由图象解决下列问题:
(1)求y与x的函数解析式;
(2)要使该游乐场每天的盈利额超过1 000元,每天至少卖出多少张门票?
... ... ...
关键词:高中人教A版数学必修一PPT课件免费下载,函数的应用PPT下载,函数的概念与性质PPT下载,.PPT格式;
扫描二维码推送至手机访问。
版权声明:本文由第一范文|第一PPT|免费作文|免费PPT课件下载发布,如需转载请注明出处。