数学教案 等差数列与等比数列综合问题(2)
教学目标 1.熟练运用等差、等比数列的概念、通项公式、前n项和式以及有关性质,分析和解决等差、等比数列的综合问题. 2.突出方程思想的应用,引导学生选择简捷合理的运算途径,提高运算速度和运算能力.3.用类比思想加深对等差数列与等比数列概念和性质的理解.教学重点与难点 用方程的观点认识等差、等比数列的基础知识,从本质上掌握公式. 例题例1 三个互不相等的实数成等差数列,如果适当排列这三个数也可以成等比数列,又知这三个数的和为6,求这三个数。例2 数列 中, , , , , ……,求 的值。例3 有四个数,前三个数成等比数列,后三个数成等差数列,首末两个数之和是21,中间两个数的和是18,求这四个数.例4 已知数列 的前 项的和 ,求数列 前 项的和.例5 是否存在等比数列 ,其前 项的和 组成的数列 也是等比数列?例6 数列 是首项为0的等差数列,数列 是首项为1的等比数列,设
,数列 的前三项依次为1,1,2,
(1)求数列 、 的通项公式;
(2)求数列 的前10项的和。 例7 已知数列 满足, , .
(1)求证:数列 是等比数列;
(2)求 的表达式和 的表达式.
作业:
1. 已知 同号,则 是 成等比数列的
(a)充分而不必要条件 (b)必要而不充分条件
(c)充要条件 (d)既不充分而也不必要条件
2. 如果 和 是两个等差数列,其中 ,那么 等于
(a) (b) (c)3 (d)
3. 若某等比数列中,前7项和为48,前14项和为60,则前21项和为
(a)180 (b)108 (c)75 (d)63
4. 已知数列 ,对所有 ,其前 项的积为 ,求 的值,
5. 已知 为等差数列,前10项的和为 ,前100项的和为 ,求前110项的和
6. 等差数列 中, , ,依次抽出这个数列的第 项,组成数列 ,求数列 的通项公式和前 项和公式.
7. 已知数列 , ,
(1)求通项公式 ;
(2)若 ,求数列 的最小项的值;
(3)数列 的前 项和为 ,求数列 前项的和 .
8. 三数成等比数列,若第二个数加4 就成等差数列,再把这个等差数列的第三个数加上32又成等比数列,求这三个数.
扫描二维码推送至手机访问。
版权声明:本文由第一范文|第一PPT|免费作文|免费PPT课件下载发布,如需转载请注明出处。