数学教案 湘教版八年级《矩形的性质》导学案
教学目标
1. 理解矩形的概念,通过实验操作观察发现矩形的特殊性质,能用演绎推理的方法加以证明,并会运用这些性质进行计算和说理。
2. 经历探索矩形性质的过程,体会研究数学问题的一般方法,发展学生合情推理和演绎推理的能力。培养学生大胆猜想小心求证的科学态度。
教学重点
1.理解矩形的定义,探索矩形的特殊性质
2.应用矩形的性质解决简单的数学问题
教学难点 矩形特殊性质的探索及应用
教学过程
一、复习回顾
新课之前,我们一起来回忆一下平行四边形的相关知识。请同学们将表格填写完整。(独立完成,请学生回答)
我们知道,一个一般的四边形,使得它的两组对边分别平行,就得到了平行四边形,换言之,平行四边形是特殊的四边形。那平行四边形中会不会也有特殊的平形四边形呢?带着这个问题,开始第一个探究活动。请学生以小组为单位,利用平行四边形活动木框,完成活动一的第(1)、第(2)问。
二、合作探究 探索新知
活动一:归纳矩形的定义
如图,用四根木条做一个平行四边形的活动木框,将其直立在桌面上并轻轻推动
d点。细心观察此过程并回答以下问题:
(1)在此过程中,四边形的内角_______(有、没有)变化;四边形对边的数量关系_______(有、没有)变化。四边形abcd仍然保持平行四边形的形状吗?为什么?理由:_________________________________
(2)观察∠dab的变化,当∠dab为直角时, abcd变成了______形,即______形。
(请一个小组派代表上讲台演示并回答
有上述活动过程可知,一个平行四边形,使得它的一个角为直角,就得到了矩形。由此归纳出矩形的定义:有一个角是直角的平行四边形是矩形(板书)
强调: ①平行四边形 ②有一个角是直角
问一问:根据矩形的定义,如何理解矩形和平行四边形的关系
指出:矩形是特殊的平行四边形。第一,矩形是平行四边形。因此它应该具有平行四边形的所有性质。第二,矩形是有一个角是直角的平行四边形。那么由矩形的定义和平行四边形的性质可以推出矩形还有其它的特殊性质。
活动二:探究矩形的特殊性质
1、折一折、猜一猜:请学生们利用准备好的矩形纸片,类比平行四边形性质的探究方法,从对称性,边,角,对角线四个角度与平行四边形对比,猜一猜矩形的特殊性质,在小组中讨论并把表填写完整
对称性 边 角 对角线
平行四边形的一般性质
中心对称
矩形的
特殊性质
通过折叠发现:矩形既是中心对称图形又是___________图形,有_____条对称轴,对称轴是_________________________(强调对称轴是直线)。并猜想得到:
(1)矩形的四个角都是直角(板书)
(2 )矩形的对角线相等(板书)
2、证一证
(1)求证:矩形的四个角都是直角
已知:如图,四边形abcd是矩形
求证:∠a = ∠b = ∠c = ∠d =90°
证明:(略)
矩形的性质定理1:矩形的四个角都是直角
几何语言:如图,∵四边形abcd是矩形 共3页,当前第1页123
扫描二维码推送至手机访问。
版权声明:本文由第一范文|第一PPT|免费作文|免费PPT课件下载发布,如需转载请注明出处。